On the energy of non-commuting graphs
Authors
Abstract:
For given non-abelian group G, the non-commuting (NC)-graph $Gamma(G)$ is a graph with the vertex set $G$ $Z(G)$ and two distinct vertices $x, yin V(Gamma)$ are adjacent whenever $xy neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.
similar resources
commuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولOn Laplacian energy of non-commuting graphs of finite groups
Let $G$ be a finite non-abelian group with center $Z(G)$. The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$. In this paper, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups..
full textOn the eigenvalues of non-commuting graphs
The non-commuting graph $Gamma(G)$ of a non-abelian group $G$ with the center $Z(G)$ is a graph with thevertex set $V(Gamma(G))=Gsetminus Z(G)$ and two distinct vertices $x$ and $y$ are adjacent in $Gamma(G)$if and only if $xy neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.
full textON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS
Let $G$ be a non-abelian finite group. In this paper, we prove that $Gamma(G)$ is $K_4$-free if and only if $G cong A times P$, where $A$ is an abelian group, $P$ is a $2$-group and $G/Z(G) cong mathbb{ Z}_2 times mathbb{Z}_2$. Also, we show that $Gamma(G)$ is $K_{1,3}$-free if and only if $G cong {mathbb{S}}_3,~D_8$ or $Q_8$.
full textRelative n-th non-commuting graphs of finite groups
Suppose $n$ is a fixed positive integer. We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$, associated to the non-abelian subgroup $H$ of group $G$. The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G : [x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$. Moreover, ${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...
full texton the groups with the particular non-commuting graphs
let $g$ be a non-abelian finite group. in this paper, we prove that $gamma(g)$ is $k_4$-free if and only if $g cong a times p$, where $a$ is an abelian group, $p$ is a $2$-group and $g/z(g) cong mathbb{ z}_2 times mathbb{z}_2$. also, we show that $gamma(g)$ is $k_{1,3}$-free if and only if $g cong {mathbb{s}}_3,~d_8$ or $q_8$.
full textMy Resources
Journal title
volume 06 issue 02
pages 135- 146
publication date 2017-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023